Learning and Testing
Submodular Functions

Grigory Yaroslavtsev
With Sofya Raskhodnikova + Work in progress
(SODA’13) with Rocco Servedio
PENNSTAT
|_Zhv)

Columbia University
October 26, 2012

Submodularity

« Discrete analog of convexity/concavity, law of
diminishing returns

 Applications: optimization, algorithmic game theory

Let f: 2% — [0, R]:
* Discrete derivative:
0, f(S) =f(SU{x}) —f(S), forSCX,x& S
* Submodular function:
0,f(S)=0,f(T), VSSCT<X,x¢T

Cut function:
o(T)=|e(T, T)|

Coverage function:
Given Ay,.... A, C U,

f(S) = }UjeSA/"

Exact learning

Q: Reconstruct a submodular f: 2% — R with poly(|X])
queries (for all arguments)?

A: Only © (\/ IXI)—approximation (multiplicative) possible
[Goemans, Harvey, lwata, Mirrokni, SODA’09]

Q: Only for (1 — €)-fraction of points (PAC-style learning with
membership queries under uniform distribution)?

Pr [Pr_ [A(S) =f(S)]=1— E] 2%

randomness of A |S~U(2%)

A: Almost as hard [Balcan, Harvey, STOC 11].

Approximate learning

 PMAC-learning (Multiplicative), with poly(|X|) queries :

1
< < > 1 — > —
randonvl,jrlléss of A ls~(l]3(rzx)[f(5) SAS) s afS)lz1-¢€|2 2

1
Q (|X|§) <a<0 (\/ |X|) (over arbitrary distributions [BH’11])

 PAAC-learning (Additive) .
Pr [Pr [|f(S)—A(S)|SB]21—E]2§

randomness of A |S~U(2%)

. . 0(|£%)2 log(l)
e Running time: |X| \# €’ [Gupta, Hardt, Roth, Ullman, STOC’11]
GO
e Running time: poly| |[X|\#/ , log; [Cheraghchi, Klivans, Kothari,

Lee, SODA’12]

Learning f: 2% — [0, R]

* For all algorithms € = const.

Goemans, Balcan, Gupta, | Cheraghchi, | Our result with
Harvey, Harvey Hardt, Klivans, Sofya
Iwata, Roth, Kothari,
Mirrokni Ullman | Lee
Learning (/] |)_ PMAC PAAC PAC
L Multiplicative a Additive 3 f:2X > {0,...,R}
approximation (/|X|) (bounded integral
E h a=0
verywhere range R < |X])
Time Poly(|X]) Poly(|X|) o(&)’ 1X|3 |R|OURI1og IRD
| X[\ 2
Extra Under arbitrary Tolerant SQ- Agnostic
features distribution gueries queries,

Agnostic

Learning: Bigger picture

Subadditive [Badanidiyuru, Dobzinski,
Ul Fu, Kleinberg, Nisan,
Roughgarden,SODA’12]
XOS = Fractionally subadditive

Ul

Submodular Other positive results:
U| e Learning valuation functions [Balcan,
Constantin, Iwata, Wang, COLT’12]
Gross substitutes * PMAC-learning (sketching) valuation functions
Ul [BDFKNR’12]

 PMAC learning Lipschitz submodular functions
OX [BH’10] (concentration around average via

S
(y \)\ Talagrand)

Additive Value demand
(linear)

Discrete convexity
* Monotone convex f:{1,...,n} - {0, ..., R}

/ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4

/
/.

1 2 3 .. <=Rn

* Convex f:{1,...,n} - {0, ...,R}

P e

1 2 3 ..<=R>=n-R.. n

O N & OO O

O N b O

Discrete submodularity f: 2% - {0, ..., R}

* Case study: R = 1 (Boolean submodular functions f: {0,1}"* - {0,1})
Monotone submodular = x; V x;, V -V x; (monomial)
Submodular = (x;, V-V x;) A (X, V- VXj,) (2-term CNF)

e Monotone submodular e Submodular

X X

S| = |X| —R

IS|<R IS|<R

Discrete monotone submodularity

e Monotone submodular f: 2% - {0, ..., R}

N\

ax(f(Sl), f(S2))

= [COURN
= 2

S| <R
f(SMZ)

Discrete monotone submodularity

 Theorem: for monotone submodular f: 2% —

{0,...,R}forallT: f(T) = oPAX f(S)

. - .
f(T) = X - f(S) (by monotonicity)

Discrete monotone submodularity
* f(T) = _max f(S)

SCT,|S|<R
« S’ =smallest subset of T such that f(T) = f(§5’)
 Vx € S"wehave 0,(S"\ {x}) >0=>

Restriction of f on 25" is monotone increasing =>|S’| < R

T

Sl

S| <R

Representation by a formula

Theorem: for monotone submodular f: 2% - {0, ..., R}

forall T:
f(T) = samax f(S)

Notation switch: |X| = n, 2% = (xy, ..., x;,)

(Monotone) Pseudo-Boolean k—=DNF
(Vomax, A;=1 — A; € R):
max; [A; - (x;, A%, A+ Ax;,)] (no negations)

(Monotone) submodular f (x4, ..., x,,) = {0, ..., R} can be
represented as a (monotone) pseudo-Boolean 2R-DNF with
constants 4; € {0, ..., R}.

Discrete submodularity

e Submodular f (x4, ..., x,) = {0, ..., R} can be
represented as a pseudo-Boolean 2R-DNF
with constants 4; € {0, ..., R}.

e Hint [Lovasz] (Submodular monotonization): X

Given submodular f, define
fmor(S) = maxycs f(T)
Then f™°" is monotone and submodular.

Learning pB-formulas and k-DNF

« DNF*R = class of pB-DNF of width k with 4; € {0, ..., R}

 i-slice f;(xq, ..., x,) = {0,1} defined as

filxg, i, x) =1 iff f(xq, .., x,) =i

» If f € DNF*Ritsi-slices f; are k-DNF and:

fCer,) = max (i £ ey, o, X))

 PAC-learning

1
— >] — > —
rml:c{(A) s~U(l?g,1}n) [A(S) = f($)] =1 E] 2

Learning pB-formulas and k-DNF

Learn every i-slice f;on1 — €' = (1 — € / R) fraction of
arguments
R
Learning k-DNF (DNFR) (let Fourier sparsity Sp= K* 1Og(?))
— Kushilevitz-Mansour (Goldreich-Levin): poly(n,SF) queries/time.
— TAttribute efficient learning”: polylog(n) - poly(SF) queries
— Lower bound: Q(2%) queries to learn a random k-junta (€ k-DNF) up
to constant precision.
Optimizations:
— Slightly better than KM/GL by looking at the Fourier spectrum of
DNF"R (see SODA paper: switching lemma => L, bound)
— Do all R iterations of KM/GL in parallel by reusing queries

Property testing

Let C be the class of submodular f:{0,1}"* - {0, ..., R}
How to (approximately) test, whether a given f isin C?

Property tester: (Randomized) algorithm for distinguishing:
1. fecC
2. (e-far): min|f - g| = € 2™

gecC

Key idea: k-DNFs have small representations:
— [Gopalan, Meka,Reingold CCC’12] (using quasi-sunflowers [Rossman’10])
Ve > 0,V k-DNF formula F there exists:

1\ 0 (k)
k-DNF formula F’ of size < (k logz) such that |F - F’| < e2™

Testing by implicit learning
* Good approximation by juntas => efficient property
testing [surveys: Ron; Servedio]
— e-approximation by J(€)-junta

1\ 9 (F)
— Good dependence on €: J(€) = (k log;)

* [Blais, Onak] sunflowers for submodular functions
[0 (k log k + log%)](k“)

0 (k)
— Query complexity: (k log E) (independent of n)

— Running time: exponential in /(€) (we think can be reduced it

to 0(J(€)))
— We have Q(k) lower bound for testing k-DNF (reduction

from Gap Set Intersection: distinguishing a random k-junta
vs k + O(log k)-junta requires Q(k) queries)

Previous work on testing submodularity

f:{0,1}"* - [0, R] [Parnas, Ron, Rubinfeld ‘03, Seshadhri, Vondrak,
ICS'11]:

« Upper bound (1/€)20m), , ,
* Lower bound: Q(n) Gap in query complexity

Special case: coverage functions [Chakrabarty, Huang, ICALP’12].

Thanks!

