Learning and Testing Submodular Functions

Grigory Yaroslavtsev

With Sofya Raskhodnikova (SODA'13)

+ Work in progress with Rocco Servedio

Columbia University

October 26, 2012

Submodularity

- Discrete analog of convexity/concavity, law of diminishing returns
- Applications: optimization, algorithmic game theory

Let
$$f: 2^X \to [0, R]$$
:

Discrete derivative:

$$\partial_x f(S) = f(S \cup \{x\}) - f(S), \quad for S \subseteq X, x \notin S$$

Submodular function:

$$\partial_{x} f(S) \geq \partial_{x} f(T), \quad \forall S \subseteq T \subseteq X, x \notin T$$

Coverage function:

Given
$$A_1, \ldots, A_n \subset U$$
,

$$f(S) = \big| \bigcup_{j \in S} A_j \big|.$$

Cut function:

$$\delta(T) = |e(T, \overline{T})|$$

Exact learning

- Q: Reconstruct a submodular $f: 2^X \to R$ with poly(|X|) queries (for all arguments)?
- **A:** Only $\widetilde{\Theta}\left(\sqrt{|X|}\right)$ -approximation (multiplicative) possible [Goemans, Harvey, Iwata, Mirrokni, SODA'09]
- Q: Only for (1ϵ) -fraction of points (PAC-style learning with membership queries under uniform distribution)?

$$\Pr_{randomness\ of\ A} \left[\Pr_{S \sim U(2^X)} [A(S) = f(S)] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

• A: Almost as hard [Balcan, Harvey, STOC'11].

Approximate learning

PMAC-learning (Multiplicative), with poly(|X|) queries:

$$\Pr_{randomness\ of\ A} \left[\Pr_{S \sim U(2^X)} [f(S) \leq A(S) \leq \alpha f(S)] \geq 1 - \epsilon \right] \geq \frac{1}{2}$$

$$\Omega\left(|X|^{\frac{1}{3}}\right) \leq \alpha \leq O\left(\sqrt{|X|}\right) \text{ (over arbitrary distributions [BH'11])}$$

PAAC-learning (Additive)

$$\Pr_{randomness\ of\ A}\left[\Pr_{S \sim U(2^X)}[|f(S) - A(S)| \leq \beta] \geq 1 - \epsilon\right] \geq \frac{1}{2}$$

- Running time: $|X|^{O\left(\frac{|R|}{\beta}\right)^2\log(\frac{1}{\epsilon})}$ [Gupta, Hardt, Roth, Ullman, STOC'11]
- Running time: $\operatorname{poly}\left(|X|^{\left(\frac{|R|}{\beta}\right)^2}, \log \frac{1}{\epsilon}\right)$ [Cheraghchi, Klivans, Kothari, Lee, SODA'12]

Learning $f: 2^X \to [0, R]$

• For all algorithms $\epsilon = const.$

	Goemans, Harvey, Iwata, Mirrokni	Balcan, Harvey	Gupta, Hardt, Roth, Ullman	Cheraghchi, Klivans, Kothari, Lee	Our result with Sofya
Learning	$\tilde{O}\left(\sqrt{ X }\right)$ - approximation Everywhere	PMAC Multiplicative α $\alpha = O\left(\sqrt{ X }\right)$	P A AC A dditive β		PAC $f: 2^X \to \{0,, R\}$ (bounded integral range $R \le X $)
Time	Poly(X)	Poly(X)	$ X ^{O\left(\frac{ R }{\beta}\right)^2}$		$ X ^3 R ^{O(R \cdot \log R)}$
Extra features		Under arbitrary distribution	Tolerant queries	SQ- queries, Agnostic	Agnostic

Learning: Bigger picture

Subadditive

U

XOS = Fractionally subadditive

U

[Badanidiyuru, Dobzinski, Fu, Kleinberg, Nisan, Roughgarden, SODA'12]

Submodular

UI

Gross substitutes

U

OXS

Additive Value demand (linear)

Other positive results:

- Learning valuation functions [Balcan, Constantin, Iwata, Wang, COLT'12]
- PMAC-learning (sketching) valuation functions [BDFKNR'12]
- PMAC learning Lipschitz submodular functions [BH'10] (concentration around average via Talagrand)

Discrete convexity

• Monotone convex $f: \{1, ..., n\} \rightarrow \{0, ..., R\}$

• Convex $f: \{1, ..., n\} \to \{0, ..., R\}$

Discrete submodularity $f: 2^X \to \{0, ..., R\}$

- Case study: R = 1 (Boolean submodular functions $f: \{0,1\}^n \to \{0,1\}$) Monotone submodular = $x_{i_1} \lor x_{i_2} \lor \cdots \lor x_{i_a}$ (monomial) Submodular = $(x_{i_1} \lor \cdots \lor x_{i_a}) \land (\overline{x_{j_1}} \lor \cdots \lor \overline{x_{j_b}})$ (2-term CNF)
- Monotone submodular

Submodular

Discrete monotone submodularity

• Monotone submodular $f: 2^X \to \{0, ..., R\}$

Discrete monotone submodularity

- Theorem: for monotone submodular $f: 2^X \to \{0, ..., R\}$ for all $T: f(T) = \max_{S \subseteq T, |S| \le R} f(S)$
- $f(T) \ge \max_{S \subseteq T, |S| \le R} f(S)$ (by monotonicity)

Discrete monotone submodularity

- $f(T) \le \max_{S \subseteq T, |S| \le R} f(S)$
- S' = smallest subset of T such that f(T) = f(S')
- $\forall x \in S'$ we have $\partial_x(S' \setminus \{x\}) > 0 \Rightarrow$

Restriction of f on $2^{S'}$ is monotone increasing $=>|S'| \le R$

Representation by a formula

• **Theorem**: for **monotone** submodular $f: 2^X \to \{0, ..., R\}$ for all T:

$$f(T) = \max_{S \subseteq T, |S| \le R} f(S)$$

- Notation switch: $|X| \to n$, $2^X \to (x_1, ..., x_n)$
- (Monotone) Pseudo-Boolean k-DNF

$$(\lor \to \max, A_i = 1 \to A_i \in \mathbb{R}):$$

$$\max_{i} [A_i \cdot (x_{i_1} \land \overline{x_{i_2}} \land \cdots \land x_{i_k})] \text{ (no negations)}$$

• (Monotone) submodular $f(x_1, ..., x_n) \rightarrow \{0, ..., R\}$ can be represented as a (monotone) pseudo-Boolean 2R-DNF with constants $A_i \in \{0, ..., R\}$.

Discrete submodularity

• Submodular $f(x_1, ..., x_n) \rightarrow \{0, ..., R\}$ can be represented as a pseudo-Boolean **2R**-DNF with constants $A_i \in \{0, ..., R\}$.

• Hint [Lovasz] (Submodular monotonization):

Given submodular f, define

$$f^{mon}(S) = max_{T \subseteq S} f(T)$$

Then f^{mon} is monotone and submodular.

Learning pB-formulas and k-DNF

- $DNF^{k,R}$ = class of pB-DNF of width k with $A_i \in \{0, ..., R\}$
- i-slice $f_i(x_1, ..., x_n) \rightarrow \{0,1\}$ defined as

$$f_i(x_1, ..., x_n) = 1$$
 iff $f(x_1, ..., x_n) \ge i$

• If $f \in DNF^{k,R}$ its i-slices f_i are k-DNF and:

$$f(x_1, \dots, x_n) = \max_{1 \le i \le R} \left(i \cdot f_i(x_1, \dots, x_n) \right)$$

PAC-learning

$$\Pr_{rand(A)} \left[\Pr_{S \sim U(\{0,1\}^n)} [A(S) = f(S)] \ge 1 - \epsilon \right] \ge \frac{1}{2}$$

Learning pB-formulas and k-DNF

- Learn every i-slice f_i on $1 \epsilon' = (1 \epsilon / R)$ fraction of arguments
- Learning k-DNF $(DNF^{k,R})$ (let Fourier sparsity $S_F = k^{k \log(\frac{R}{\epsilon})}$)
 - Kushilevitz-Mansour (Goldreich-Levin): $poly(n, S_F)$ queries/time.
 - "Attribute efficient learning": $polylog(n) \cdot poly(S_F)$ queries
 - Lower bound: $\Omega(2^k)$ queries to learn a random k-junta ($\in k$ -DNF) up to constant precision.
- Optimizations:
 - Slightly better than KM/GL by looking at the Fourier spectrum of $DNF^{k,R}$ (see SODA paper: switching lemma => L_1 bound)
 - Do all R iterations of KM/GL in parallel by reusing queries

Property testing

- Let C be the class of submodular $f: \{0,1\}^n \to \{0,\dots,R\}$
- How to (approximately) test, whether a given f is in C?
- Property tester: (Randomized) algorithm for distinguishing:
 - 1. $f \in \mathcal{C}$
 - 2. $(\epsilon$ -far): $\min_{g \in \mathcal{C}} |f g| \ge \epsilon 2^n$
- Key idea: k-DNFs have small representations:
 - [Gopalan, Meka,Reingold CCC'12] (using quasi-sunflowers [Rossman'10]) $\forall \epsilon > 0$, \forall **k**-DNF formula F there exists:

k-DNF formula F' of size
$$\leq \left(k \log \frac{1}{\epsilon}\right)^{O(k)}$$
 such that $|F - F'| \leq \epsilon 2^n$

Testing by implicit learning

- Good approximation by juntas => efficient property testing [surveys: Ron; Servedio]
 - ϵ -approximation by $J(\epsilon)$ -junta
 - Good dependence on ϵ : $J(\epsilon) = \left(k \log \frac{1}{\epsilon}\right)^{O(k)}$
 - [Blais, Onak] sunflowers for submodular functions $[O\left(k \log k + \log \frac{1}{\epsilon}\right)]^{(k+1)}$
 - Query complexity: $\left(k \log \frac{1}{\epsilon}\right)^{\tilde{O}(k)}$ (independent of **n**)
 - Running time: exponential in $J(\epsilon)$ (we think can be reduced it to $O(J(\epsilon))$)
 - We have $\Omega(k)$ lower bound for testing k-DNF (reduction from Gap Set Intersection: distinguishing a random k-junta vs k + O(log k)-junta requires $\Omega(k)$ queries)

Previous work on testing submodularity

```
f: \{0,1\}^n \to [0,R] [Parnas, Ron, Rubinfeld '03, Seshadhri, Vondrak,
ICS'11]:
```

- Upper bound $(1/\epsilon)^{O(\sqrt{n})}$. Lower bound: $\Omega(n)$ } Gap in query complexity

Special case: coverage functions [Chakrabarty, Huang, ICALP'12].

Thanks!